Luminescence and fine structure correlation in ZnO permeated porous silicon nanocomposites.
نویسندگان
چکیده
Nanocomposites formed by porous silicon (PS) and zinc oxide (ZnO) have potential for applications in optoelectronic devices. However, understanding the distribution of both materials in the nanocomposite, and especially the fine structure of the synthesized ZnO crystals, is key for future device fabrication. This study focuses on the advanced characterization of a range of PS-ZnO nanocomposites by using photon- and ion-based techniques, such as X-ray absorption spectroscopy (XAS) and elastic backscattering spectroscopy (EBS), respectively. PS substrates formed by the electrochemical etching of p(+)-type Si are used as host material for the sol-gel nucleation of ZnO nanoparticles. Different properties are induced by annealing in air at temperatures ranging from 200 °C to 800 °C. Results show that wurtzite ZnO nanoparticles form only at temperatures above 200 °C, coexisting with Si quantum dots (QDs) inside a PS matrix. Increasing the annealing temperature leads to structural and distribution changes that affect the electronic and local structure of the samples changing their luminescence. Temperatures around 800 °C activate the formation of a new zinc silicate phase and transform PS into an amorphous silicon oxide (SiOx, x≈ 2) matrix with a noticeably reduced presence of Si QDs. Thus, these changes affect dramatically the emission from these nanocomposites and their potential applications.
منابع مشابه
Photoluminescence properties of porous silicon nanocomposites
Different porous silicon (PS) layers were impregnated with rhodamine 6G (Rh) solution in order to form Rh/PS nanocomposites. The effect of the porous matrix (fresh, oxidised, type p) on the propriety of photoluminescence (PL) has been investigated. It was found that the luminescence of this nanocomposite is provided by an energy transfer from PS nanocristallites to rhodamine and from interactio...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملZnO-porous silicon nanocomposite for possible memristive device fabrication
Preliminary results on the fabrication of a memristive device made of zinc oxide (ZnO) over a mesoporous silicon substrate have been reported. Porous silicon (PS) substrate is employed as a template to increase the formation of oxygen vacancies in the ZnO layer and promote suitable grain size conditions for memristance. Morphological and optical properties are investigated using scanning electr...
متن کاملAn Xafs and Xeol Study on the Structure and Optical Properties of Cds/porous Silicon (cds/ps) Composite Nanostructure
Electrochemically deposited CdS nanoparticles (NPs) were formed using porous silicon (PS) as a substrate/electrode. The structure, electronic behavior of the CdS NPs and the interaction between CdS-PS were systematically examined using electron microscope, X-ray diffraction and X-ray absorption fine structure (XAFS) at S K-edge and Si K-edge. The optical luminescence behavior of the nanocomposi...
متن کاملElectronic states and luminescence in higher fullerene/porous Si nanocrystal composites.
Photoluminescence (PL) measurements have been performed on the nanocomposites of higher fullerene-coupled porous silicon (PS) nanocrystals. For the C70PS and C76(78)PS nanocomposites, the PL spectra show a pinning wavelength at approximately 565 nm and for the C84PS and C94PS nanosystems the pinning wavelength is at approximately 590 nm. The PL pinning property is closely related to the sorts o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 32 شماره
صفحات -
تاریخ انتشار 2015